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Abstract

We have successfully grown sizable single crystals of La2Cu12z(Zn,Mg)zO4 with up to nearly half of the magnetic Cu sites

replaced by non-magnetic Zn and Mg. Neutron scattering, SQUID magnetometry, and complementary quantum Monte Carlo

(QMC) simulations demonstrate that this material is an excellent model system for the study of site percolation of the square-

lattice Heisenberg antiferromagnet (SLHAF) in the quantum-spin limit S ¼ 1/2. Carefully oxygen-reduced samples exhibit

Néel order up to the percolation threshold for site dilution, zp < 40.7%. For z . 10%, the material exhibits a low-temperature

tetragonal (LTT) structural phase, with a transition temperature that increases linearly with doping. Above z < 25%, Néel order

occurs in the LTT phase. Up to at least z ¼ 35%, the Néel temperature TN(z ) of the experimental system corresponds to the

temperature at which QMC indicates that the spin correlations for the nearest-neighbor S ¼ 1/2 SLHAF have grown to

approximately 100 lattice constants. Neutron scattering measurements of the static structure factor in the paramagnetic regime

allow the determination of the two-dimensional spin correlations, which are found to be in excellent quantitative agreement

with QMC over a wide common temperature and doping range. Neutron scattering and QMC results for the temperature

dependence of the static structure factor amplitude S(p,p) are in good agreement as well. As the concentration of non-magnetic

sites is increased, the magnetic correlation length j(T,z ) crosses over from an exponential dependence on rs/T to power-law

behavior in the temperature regime studied. Fits to a heuristic cross-over form for j(T,z ) allow an estimate of the spin stiffness,

rs ¼ rs(z ), which approaches zero at z ¼ zp. The combined experimental and numerical data presented here provide valuable

quantitative information for tests of theories of the randomly diluted S ¼ 1/2 SLHAF.
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The discovery of high-temperature superconductivity in

charge-carrier doped La2CuO4 has stimulated an enormous

interest in the properties of low-dimensional quantum

magnets. The main structural building block of La2CuO4

and of related Mott insulators is a square lattice of Cu2þ

spin-1/2 magnetic ions that experience a strong nearest-

neighbor (NN) antiferromagnetic superexchange (J <
1550 K) mediated by intervening oxygens. Apart from

small correction terms (such as anisotropies and a three-

dimensional coupling), which lead to Néel order at a non-

zero temperature, the magnetic degrees of freedom of these
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CuO2 sheets are well-described by the square-lattice

Heisenberg Hamiltonian

H ¼ J
X
ki;jl

Si·Sj; ð1Þ

where the sum is over NN sites, J is the antiferromagnetic

Cu–O–Cu superexchange, and Si is the S ¼ 1/2 operator at

the site i.

Extensive experimental [1–10], quantum Monte Carlo

(QMC) [11–13], and theoretical [14–24] efforts have led to

a good understanding of the quantum many-body physics

described by Eq. (1). The discrete Hamiltonian Eq. (1) has

been mapped to a continuum quantum non-linear s model

(QNLsM), and it has been established that the NN square-

lattice Heisenberg antiferromagnet (SLHAF) exhibits a

broken-symmetry ground state (and renormalized classical

behavior) rather than a quantum-disordered ground state

even in the extreme quantum-spin limit of spin-1/2 [14].

Numerical and theoretical studies indicate that the quantum

critical point separating these two ground states may be

traversed, for example, upon the introduction of frustrating

next-NN interactions [14,25] or by coupling two SLHAFs to

form a bilayer [26]. Although the full spin Hamiltonian of

La2CuO4 is believed to contain a frustrating next-NN

exchange of about 0.05–0.10J [7,8,27], this is well below

the value of <0.24J needed to disorder the system [25].

Quantum phase transitions in the presence of disorder are

the subject of considerable current interest. Magnetic

systems are often of particular value in this context, as the

combined effects of quantum fluctuations and quenched

disorder can be studied with various analytical and numeri-

cal methods. Furthermore, model magnets, if they can be

found in nature, can serve as an important testing ground of

theoretical predictions. A significant amount of theoretical

and numerical effort has been devoted to the relatively

simple one-dimensional [28,29] and two-dimensional [30,

31] Ising model in a transverse field. For the O(3) symmetric

S ¼ 1/2 SLHAF, the effects of a single impurity are well

understood [32–34], but there are few theoretical results for

finite impurity concentrations [35]. There have been sug-

gestions that random site [30,36,37] and bond [38] dilution

of the NN S ¼ 1/2 SLHAF may lead to a non-trivial

quantum phase transition. Extensive experimental results

exist for S ¼ 5/2 up to very high impurity concentrations

[39], but results for the extreme quantum-spin limit of

S ¼ 1/2 have been limited to lower concentrations [5,

40–48]. In studies of site-diluted S ¼ 5/2 Heisenberg and

Ising antiferromagnets [39,49], long-range order was found

to disappear only above the percolation threshold

zp < 40.725% [50,51]. Earlier results for the Néel tempera-

ture of randomly diluted La2CuO4 extrapolate to zero

temperature at concentrations well below the percolation

threshold [5,40–47]. These results, along with theoretical

predictions [30,36,37] and numerical studies [52], suggested

the possible existence of a new quantum critical point at

zS¼1/2 , zp. However, recent Monte Carlo simulations

[53–59] indicate that the site diluted NN S ¼ 1/2 SLHAF

remains ordered up to the percolation threshold. While the

zero-temperature transition appears to be a classical perco-

lation transition, the intermediate-temperature properties of

the spin-1/2 system at z ¼ zp seem to be controlled by the

effective proximity to a new multicritical point [58,59].

Very recently, we have been able to show that

La2Cu12z(Zn,Mg)zO4 is a model material for the study of

the effects of non-magnetic impurities in the S ¼ 1/2

SLHAF up to and beyond the site percolation threshold

[56]. Fig. 1 is a schematic of the randomly diluted CuO2

sheets in La2Cu12z(Zn,Mg)zO4, showing the geometric

transition from an infinite connected cluster to finite

disconnected clusters as the percolation threshold is

traversed. We have also performed QMC simulations of

the randomly diluted NN S ¼ 1/2 SLHAF,

H ¼ J
X
ki;jl

pipjSi·Sj; ð2Þ

where pi ¼ 1 ( pi ¼ 0) on magnetic (non-magnetic) sites.

The experimental results for the static structure factor

in the 2D correlated paramagnetic region agree remark-

ably well with our numerics [56], indicating that

La2Cu12z(Zn,Mg)zO4 is indeed a very good model system.

The present paper outlines some aspects of these results in

more detail.

1. Sample growth and characterization

A lack of stoichiometric samples at high non-magnetic

Fig. 1. Schematic of finite-sized sections of the infinite square lattice

with random site dilution. Sites on the infinite cluster are shown in

black, sites on finite disconnected clusters in grey, and diluents in

white. At a concentration of 31%, most of the lattice is still

connected. At 40.7%, just below the percolation threshold, much of

the lattice is disconnected, but there is still a percolating cluster that

spans the infinite lattice. Above the percolation threshold, all

clusters are of finite size. The inset is a close-up view of the lattice,

showing the role that magnetic Cu and non-magnetic Zn/Mg ions

play in the experimental system.
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concentrations had limited earlier experimental work on

randomly diluted La2CuO4. In previous studies of poly-

crystalline samples the concentration of non-magnetic ions

was as high as 25% [47], significantly below the percolation

threshold. Single crystal results had been limited even

further, to z < 15% and below [5,44,46]. Furthermore, the

excess oxygen typically found in as-grown samples

introduces holes into the copper–oxygen sheets which

frustrate the antiferromagnetism and quickly destroy mag-

netic order [60]. Differing values for TN(z ) indicate that this

problem had not been fully resolved [5,40–47].

We have successfully grown single crystals of

La2Cu12z(Zn,Mg)zO4 by the optical traveling-solvent float-

ing-zone method. Zn2þ and Mg2þ are non-magnetic and

have larger and smaller ionic radii, respectively, than Cu2þ.

By jointly substituting Zn and Mg for Cu, we succeeded in

growing samples up to and beyond the percolation threshold

[56]. The Zn content of our samples is approximately 10%,

while the Mg content varies. Typical single-grain sections

are about 4 mm in diameter and 40 mm long. The com-

position of the samples was measured with electron probe

microanalysis on sections cut from the ends of the crystals.

Some crystals have small Cu/Zn/Mg concentration gradients

along the length (Dz ¼ 1–2%), but all crystals are very

uniform radially. The mosaic widths are very good, 150 full

width at half maximum (FWHM) or less, as measured by

neutron diffraction. Samples were carefully annealed for

24 h at 900–950 8C in an Ar atmosphere to remove excess

oxygen. Using SQUID magnetometry and neutron diffrac-

tion we checked that subsequent anneals do not further raise

TN, confirming that the first anneal was successful.

The neutron scattering measurements presented here

were performed at the National Institute of Standards and

Technology (NIST) Center for Neutron Research (NCNR),

using the BT2 and BT9 thermal instruments and the SPINS

cold neutron instrument.

2. Phase diagram

Near the Néel transition, the uniform susceptibility of

La2Cu12z(Zn,Mg)zO4 becomes coupled to the staggered

susceptibility through the antisymmetric Dzyaloshinskii–

Moriya term (not included in Eqs. (1) and (2)), and the

uniform susceptibility perpendicular to the CuO2 sheets

increases to a cusp at TN [46,61]. In order to determine the

Néel temperature, small pieces, a few mm on each side,

were cut from the larger crystals for magnetometry. Fig. 2(a)

shows the uniform susceptibility for several samples

measured with a SQUID magnetometer. Polycrystalline

samples, with concentrations assumed to be equal to their

nominal values, yielded similar results. At higher dilution

levels, a large Curie-like component emerges [46], and the

cusp at TN becomes more difficult to distinguish.

Neutron diffraction measurements allow us to follow

TN(z ) at higher concentrations. The intensity at a magnetic

Bragg reflection is proportional to the square of the

staggered magnetic moment, and the doping dependence

of the extracted ordered moment [56] agrees rather well with

recent theoretical [35] and numerical [57] results for the NN

SLHAF. Fig. 2(b) shows the temperature dependence of the

scattering at the (1,0,0) magnetic reflection for several

samples (we use orthorhombic (Bmab ) notation throughout).

The neutron diffraction results for TN agree with SQUID

measurements at low and intermediate concentrations and

indicate that Néel order persists up to at least z ¼ 39%.

We typically observe an additional temperature-

independent non-magnetic signal which was subtracted

from the data in Fig. 2(b). This remnant signal is a com-

bination of double scattering from the (1,0,2) and (0,0,2)

nuclear Bragg reflections and a small l/2 contamination due

to nuclear scattering of higher-energy neutrons. The double-

scattering component is strongly energy-dependent, and

decreases at lower neutron energies. Neutrons with half the

wavelength (and four times the energy) of the primary beam

will also be diffracted by the monochromator. Such neutrons

are filtered out with pyrolitic graphite on thermal

instruments or berylium on SPINS, but small numbers

Fig. 2. Measurements of the Néel temperature TN(z ) for several

samples. (a) Magnetic susceptibility measured with a SQUID

magnetometer with a 500 Oe field applied along the c axis. The

susceptibility exhibits a cusp at TN. At higher concentrations, a

strong Curie-like component emerges, making the cusps more

difficult to distinguish. (b) (1,0,0) magnetic Bragg peak intensity

from neutron diffraction. A temperature-independent component,

which is predominantly due to nuclear double scattering, has been

subtracted. The lines represent fits for the magnetic order parameter

squared, , (TN 2 T )2b with b < 0.30, assuming a Gaussian

distribution of TN (typically <4 K) due to inhomogeneities present

in the large samples used.
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may still pass through if the filter is not sufficiently thick,

giving rise to weak (2,0,0) nuclear Bragg scattering at the

same angular position as the primary beam at the (1,0,0)

magnetic peak.

The correction terms to Eqs. (1) and (2) are believed to

include a small frustrating next-NN exchange [7,8,27],

which might in principle become more important at higher

concentrations, where TN is relatively small, and lead to

low-temperature spin-glass behavior. The associated spin

freezing would be expected to lead to a momentum

broadening of the magnetic peaks. Moreover, the observed

transition temperature would depend on the probe fre-

quency. We have tested for the possibility of low-

temperature spin-glass physics and found in all samples

that showed magnetic order (up to z ¼ 39%), that the width

of the observed magnetic peaks remained resolution limited.

Furthermore, we measured the temperature dependence of

the magnetic scattering in a 35% diluted sample using

incident neutron energies of 3.5, 5, and 13 meV, with

FWHM energy resolutions ranging from 0.08 to 0.72 meV,

as shown in Fig. 3. Since the transition temperature is

independent of the neutron energy resolution over a

relatively wide range of energies, we conclude that the

observed behavior is a genuine Néel transition [62].

At high temperatures, pure La2CuO4 is in the so-called

high-temperature tetragonal (HTT) phase (I4/mmm ). Below

about 530 K, the oxygen octahedra surrounding the copper

ions tilt in a staggered fashion, creating an orthorhombic

distortion of the CuO2 planes and forming the low-

temperature orthorhombic (LTO) phase (Bmab ). In a 8%

Zn-doped sample, we find that the HTT to LTO transition

temperature increases to 577 K, but we have not followed

this transition to higher concentrations, although previous

experiments have found that it increases monotonically with

both Zn and Mg doping [41]. Above z ¼ 10%, we dis-

covered a second structural transition into a low-tempera-

ture tetragonal (LTT) phase (P42/ncm ). Fig. 4 shows

longitudinal scans through the (2,0,0) position measured

by neutron diffraction above, at, and below the LTT tran-

sition temperature TLTT ¼ 63(5) K for z ¼ 19%. The two

peaks observed at higher temperature correspond to the

(2,0,0) and (0,2,0) reflections. Both are observed in the same

scan because of the presence of twin domains with different

orthorhombic distortion directions. In the LTT phase, only

one reflection is observed. The redistribution of intensity

from the orthorhombic peaks to the tetragonal peak without

a shift in the peak positions indicates that this is a first-order

transition. We note, that the LTT phase has previously been

observed in (La,Ba)2CuO4 [63] and (La,Sr,Nd)2CuO4 [64].

The magnetic and structural phase diagram obtained

from SQUID magnetometry and neutron diffraction is

shown in Fig. 5. Below z , 20%, our data agree well with

several previous results [5,45–47]. Above this concen-

tration, we find that TN(z ) deviates from a linear behavior,

approaching zero only at the percolation threshold.

Although random dilution weakens the tendency to order

[56], it appears that quantum fluctuations are not strong

enough to shift the critical point: zS¼1/2 ¼ zp, within the

uncertainty of our experiment.

The pure two-dimensional Heisenberg antiferromagnet

described by Eq. (1) cannot exhibit long-range order at non-

zero temperature. However, weak inter-plane couplings and

anisotropies in La2Cu12z(Zn,Mg)zO4 lead to Néel order at

non-zero temperature approximately when aeffj
2
2D < 1;

Fig. 3. Order parameter measurements performed on the 35%

sample on the cold neutron instrument using neutron energies of 3.5,

5, and 13 meV. The corresponding energy resolutions range from

0.08 to 0.72 meV (FWHM). Even at very high concentrations close

to the percolation threshold, the order parameter measurement

remains independent of the energy resolution, indicating Néel rather

than spin-glass order. A temperature-independent component of the

signal, which is highly energy-dependent and predominantly due to

double scattering involving the nuclear (1,0,2) and (0,0,2)

reflections, has been subtracted from the data.

Fig. 4. Neutron diffraction measurements of the first-order structural

phase transition from the orthorhombic to the low-temperature

tetragonal phase at 19% dilution using 14.7 meV neutrons and

collimations of 100-27.50-sample-23.70-open. Scans are offset verti-

cally, and lines indicate Gaussian fits. Above the transition, the

longitudinal scans show a superposition of (2,0,0) and (0,2,0) peaks

from different crystal domains. In the transition region, both phases

coexist, partly because of the weakly first-order nature of the transition,

and because of the small concentration gradient present in our samples.

In the tetragonal phase, only one peak is observed.

O.P. Vajk et al. / Solid State Communications 126 (2003) 93–10196



where j2D is the two-dimensional magnetic correlation

length corresponding to Eq. (1) and aeff is a suitable

combination of the correction terms in the full spin

Hamiltonian [7]. In pure La2CuO4, this occurs when j2D <
100a; where a is the planar lattice constant [7]. Using QMC

results for Eq. (2) (discussed in more detail below), we find

remarkable agreement between the j2D=a ¼ 100 contour and

TN(z ) up to at least 35%. This is demonstrated in Fig. 5(a).

The continuous line indicates direct numerical results for

Eq. (2), while the dashed line results from an extrapolation

of numerical data at higher temperatures. The full spin

Hamiltonian describing La2Cu12z(Zn,Mg)zO4 should

depend on the details of the crystal structure. Above

z < 25%, Néel order occurs in the LTT phase. Nevertheless,

TN(z ) evolves smoothly with doping, and corresponds to

j2D=a ¼ 100 from QMC for Eq. (2) even when TN , TLTT,

as demonstrated in Fig. 5. Consequently, any changes with

doping in the full spin Hamiltonian must be very subtle.

A non-zero next-NN exchange in La2Cu12z(Zn,Mg)zO4

could shift the percolation threshold from the NN-only value

of zp < 40.7%. Since the next-NN coupling in La2Cu12z

(Zn,Mg)zO4 is frustrating [8], it could, in principle, shift the

critical point noticeably to a value below the percolation

threshold (and lead to spin-glass physics, as discussed

above) [39]. However, the value of the next-NN exchange is

relatively small (0.05–0.10J ) [8]. For the pure Hamiltonian

Eq. (1), an additional frustrating next-NN coupling of

<0.24J is needed to disorder the ground state [25]. We note

that recent spin-wave measurements at the magnetic zone

boundary suggest that the dominant further-neighbor

interaction is not a next-NN exchange but a four-spin ring

exchange [10], which does not extend connectivity beyond

the NN percolation threshold.

3. Static structure factor measurement

We have systematically studied the static structure factor

in the paramagnetic phase of La2Cu12z(Zn,Mg)zO4, which

allowed us to determine the instantaneous spin–spin

correlation length j(z,T ). Above TN, the 3D magnetic

Bragg peaks become rods of 2D scattering. The static

structure factor Sðq2DÞ; where q2D is the 2D momentum

transfer component in the CuO2 sheets relative to the 2D

magnetic zone center, was measured with neutron scattering

in two-axis, energy-integrating scans across these rods [7].

Fig. 6 shows representative data for two different samples.

The measured peaks broaden as j decreases, both with

increasing temperature and increasing dilution. Correlation

lengths were obtained from fits to a single 2D Lorentzian

Sðq2DÞ ¼
Sðp;pÞ

1 þ q2
2Dj

2
ð3Þ

convoluted with the instrumental resolution. We note that

well above TN, the spin system is effectively isotropic.

However, near TN the anisotropy and 3D coupling terms in

the full spin Hamiltonian lead to crossover physics. Our

two-axis, energy-integrating experiment simultaneously

measures both the in-plane and out-of-plane components of

the static structure factor. Since our data do not allow for a line-

shape analysis, we carried out fits to a single 2D Lorentzian.

The correlation lengths are plotted versus J/T in Fig.

7(a), and the static structure factor amplitude S(p,p) is

shown in Fig. 7(b). Temperature is scaled by J ¼ 135 meV,

the antiferromagnetic superexchange energy of the pure

system [3,4]. The data are cut off above TN by one standard

deviation (<4 K), as obtained from fits of the order

parameter (Fig. 2(b)). From Fig. 7(a) it can be seen that

dilution significantly decreases the rate at which correlations

grow as the system is cooled. At high concentrations, j(z,T )

crosses over from exponential to power-law behavior. We

note that the z ¼ 40(2)% and 43(2)% samples do not exhibit

Néel order at 1.4 K (J/T < 1100), and the spin correlations

appear to approach a constant zero-temperature value, as

expected for z . zp.

Fig. 5. Magnetic and structural phase diagram of La2Cu12z

(Zn,Mg)zO4. (a) Néel temperature vs. dilution. Single crystal results

are from neutron measurements of the order parameter, powder

results are from SQUID susceptibility measurements of polycrystal-

line samples. Our results up to z ¼ 25% are in good agreement with

previous work. The decrease of TN(z ) at higher concentrations is not

linear, but more gradual. Within the uncertainty of our experiment,

TN(z ) reaches zero at the percolation threshold, zp < 40.7%. (b)

Structural transition temperature from orthorhombic to LTT phase,

as measured by neutron diffraction. The doping dependence of the

transition temperature is approximately linear, as indicated by the

dashed line. We note that for z . 10% the Mg concentration of our

samples was typically 10% while the Zn content varied.
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4. Quantum Monte Carlo

In order to test the degree to which La2Cu12z(Zn,Mg)zO4

is described by the randomly diluted NN Heisenberg

Hamiltonian we have performed QMC simulations to

calculate j(z,T ) for Eq. (2). We used a loop-cluster

algorithm [56,65–67], with lattice sizes 10–20 times larger

than the correlation length in order to avoid finite-size

effects. We were able to simulate very large lattices of up to

1700 £ 1700 sites, and to reach temperatures as low as

T ¼ J/100. Previous simulations were confined to very

small lattices and high temperatures [52,68]. At each tem-

perature and concentration, between 5 and 200 random

configurations were averaged, with 104–105 measurements

per configuration. The QMC results for j(z,T ), shown as

filled symbols in Fig. 7(a), extend to higher temperatures

and complement the experimental data. We find excellent

quantitative agreement between the two up to the percola-

tion threshold. We emphasize that this comparison contains

no adjustable parameters, since J and a are known. Above

the percolation threshold, the effective concentration of

approximately 46% is slightly higher than the actual

experimental value of 43(2)%. A possible origin for this

might be a stronger relative influence of the next-NN term in

the full spin Hamiltonian for z . zp.

In Fig. 7(b), the static structure factor amplitude S(p,p)

from QMC (black symbols) is shown together with the

experimental results. Unlike the correlation length, the

measured amplitude also depends on experimental con-

ditions, such as the effective illuminated sample volume and

the neutron flux. Since the absolute value of S(p,p) could

not be determined with good accuracy, we have normalized

the experimental data for each sample to match the respec-

tive numerical values. Note that the temperature scale is not

adjustable. The temperature dependence of S(p,p) can

therefore still be compared between experiment and QMC,

and we find good agreement.

5. Theory

The ground state of the pure NN SLHAF is ordered, but

quantum fluctuations renormalize the spin-wave velocity,

c ¼ 2
ffiffi
2

p
SZcðSÞJa; and spin-stiffness, rs ¼ S2ZrðSÞJ; from

Fig. 6. Two-axis, energy-integrating measurements of the static

structure factor taken with 30.5 meV incident neutron energy and

horizontal collimations of 400-27.50-sample-23.70. At 31% dilution

(a) just above TN and (b) well above TN. (c) At 19% dilution, just

above TN. The dashed line in (c) indicates the instrumental

resolution. Solid lines show fits to a 2D Lorentzian convoluted

with the resolution, as discussed in the text.

Fig. 7. (a) Spin–spin correlation lengths, in units of the lattice

constant, versus inverse temperature, in units of the NN

superexchange J ¼ 135 meV of the pure system. Open symbols

represent results from neutron scattering measurements of

La2Cu12z (Zn,Mg)zO4; filled symbols represent QMC data for

z ¼ 0, 20, 31, 41, and 46%. No adjustable parameters were used in

the comparison. Experimental and QMC results for z ¼ 0 are from

previous work [7,13]. The dashed lines are fits to Eqs. (5) and (6), as

described in the text, and the solid line is Eq. (4). (b) Static structure

factor peak amplitude versus inverse temperature. Open symbols

are neutron scattering results and filled symbols are from QMC, as

above. Normalization between experimental and numerical results

is discussed in the text.
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their classical values (using units in which gmB ¼

kB ¼ " ¼ 1). For S ¼ 1/2, the quantum renormalization

factors Zc and Zr are known from theoretical and numerical

studies, and jðz ¼ 0; TÞ is given by [14,15]

j

a
¼

e

8

c=a

2prs

e2prs =T 1 2
1

2

T

2prs

� �
þ O

T

2prs

� �2
" #

ð4Þ

with c ¼ 1.657Ja and rs ¼ 0.18J [13]. Even though Eq. (4)

is strictly valid only at asymptotically low temperatures

[13–15,24], it agrees remarkably well with experiment

[6–8] and numerics [12,13] in the range 2 , j=a , 200

shown in Fig. 7(a).

The derivation of Eq. (4) involves mapping the discrete

Hamiltonian Eq. (1) to the continuum quantum non-linear

sigma model (QNLsM), and it assumes the existence of an

ordered ground state and translational invariance. Random

dilution breaks translational invariance and leads to defect

rods in the Euclidian-time direction of the effective

QNLsM. These rods break Lorentz invariance, and a

QNLsM description may no longer be valid [14,35].

Furthermore, we can see from Fig. 7(a) that at higher

concentrations the temperature dependence of j(z,T )

approaches power-law behavior. The modified form of

Eq. (4)

j

a
¼

e

8

c=a

2prs

e2prs=T

1 þ ð4prs=TÞ
2nT

ð5Þ

with nT ¼ 1 has been suggested for disorder-free systems

approaching a quantum critical point [69]. This crossover

formula interpolates between Eq. (4) at T , rs and j , 1=T

as rs approaches zero. Although recent studies indicate that

z ¼ zp is not a quantum critical point [57–59], random

dilution reduces the spin stiffness and may be viewed as

bringing the system closer to such a point in an extended

parameter space.

In a classical picture, at T ¼ 0, z ¼ zp is a (geometric and

thermal) multicritical point, and rs ¼ 0 as well as power-law

behavior of j(zp,T ) are expected. For the S ¼ 5/2 system

Rb2(Mn,Mg)F4 at and above the percolation threshold, the

correlation length is well described by the form

1

jðz; TÞ
¼

1

j0ðzÞ
þ

1

jT ðTÞ
ð6Þ

where j0(z ) is the saturated zero-temperature length and

jT ðTÞ , T2nT [39]. At the percolation threshold, the thermal

exponent of this S ¼ 5/2 system was found to be

nT ¼ 0.90(5). A model based on the growth of 1D spin

correlations along self-avoiding walks on the percolation

cluster has been used successfully to describe these results

for Rb2(Mn,Mg)F4 [70] without adjustable parameters.

However, this model assumes classical spin chains, and

the fact that we obtain a different exponent for S ¼ 1/2 (see

below) is therefore not surprising.

We have tested the extent to which Eqs. (4) and (5)

describe our results by fitting the numerical data using c(z )

and rs(z ) as adjustable parameters. We find that fits to Eq.

(4) give a good description of j(z,T ), especially at low

concentrations, and even at z ¼ 31% for j=a . 8: However,

the modified crossover form Eq. (5) even captures the high-

temperature power-law behavior at higher concentrations,

as shown in Fig. 7(a). Results for c(z ) and rs(z ) from fits of

Eq. (5), including dilution levels not shown in Fig. 7, are

shown in Fig. 8. Using Eq. (4) results in large uncertainties

for c(z ), but both c(z ) and rs(z ) obtained using the two

different forms agree within the errors. For the pure system,

fits of QMC results [13] below j=a ¼ 200 yield 2prsð0Þ ¼

1:18ð1ÞJ and c(0) ¼ 1.33(3)Ja, about 4% higher and 20%

lower, respectively, than the most accurate estimate [13].

For z . zp, the combined QMC and experimental data were

fit to Eq. (6). As can be seen in Fig. 7(a), our results are

described well by this form. Overall, we obtain nT ¼ 0.72(7)

near the percolation threshold.

An attempt to combine percolation theory with the

QNLsM model predicts for the spin stiffness [37]

rsðzÞ

rsð0Þ
¼ AðzÞ 1 2

�gð0Þ

P1ðzÞ

� �
1

1 2 �gð0Þ
; ð7Þ

where ḡ(0) ¼ 0.685 is the coupling constant corresponding

to the NN S ¼ 1/2 SLHAF at z ¼ 0 [14], A(z ) is the bond

dilution factor, and P1(z ) is the probability of a site

belonging to the infinite cluster of spins. A(z ) is well

described up to z < 37% by AðzÞ < 1 2 pz þ pz2=2 [71].

Up to z < 20%, P1ðzÞ < 1 2 z [57] since at low concen-

trations there are very few separated clusters of spins so that

P1(z ) is mostly reduced from unity due to individual

removed sites. Eq. (7), shown as a dotted line in Fig. 8,

incorrectly predicts rs(z < 30%) ¼ 0, and hence a quantum

critical point well below the percolation threshold [37]. To

our surprise, we find that substituting 1 þ z for 1=P1ðzÞ

quantitatively describes rsðzÞ=rsð0Þ even at z ¼ 35%. This

modified form of Eq. (7) is shown as a solid line in Fig. 8.

Fig. 8. Effective spin-wave velocity c(z ) and spin stiffness 2prs(z )

as a function of non-magnetic concentration z extracted from fits to

Monte Carlo results using the heuristic crossover form Eq. (5).

Lines are discussed in the text.

O.P. Vajk et al. / Solid State Communications 126 (2003) 93–101 99



This substitution matches the original expression at low

concentrations and prevents the second term in Eq. (7) from

going to zero below the percolation threshold. We note that

Eq. (7) is a one-loop renormalization-group result, and

(unknown) higher-order terms might perhaps improve

agreement with our observations. Recent numerical finite-

size scaling results for the spin stiffness give qualitatively

similar results [57], but deviate from the unmodified form of

Eq. (7) more quickly at lower concentrations. The expres-

sion for the spin-wave velocity corresponding to Eq. (7) is

cðzÞ=cð0Þ ¼ AðzÞð1 þ z=2Þ [37], and is shown by the dashed

line in Fig. 8. This expression does not match our QMC fit

results, possibly for a number of reasons. Even at z ¼ 0, a fit

results in a 20% error in c [13]. Moreover, in the presence of

random dilution, spin waves become strongly damped and

the spin-wave velocity is not expected to be a well-defined

quantity [35].

6. Discussion

Recent theoretical work for the randomly diluted S ¼ 1/2

NN square-lattice Heisenberg antiferromagnet has produced

exact results at low concentration [33] and led to predictions

at intermediate concentrations [35,37]. Impurities may

localize spin excitations and lead to a breakdown of the

classical hydrodynamic description of excitations in terms

of spin waves above a characteristic length scale [35]. Static

properties such as the staggered magnetization and TN, as

well as the spin stiffness rs, are expected to remain well

defined. On the other hand, dynamic observables, such as

the spin-wave velocity c, become ill-defined in this picture.

As long as the ground state remains ordered, the low-

temperature correlation length should still scale as j ,
e2prs =T : This is consistent with our observation for j(z,T )

over a wide range of concentrations and temperatures,

which we find to be well described by Eq. (4), and especially

the heuristic crossover form Eq. (5).

Although the percolation transition for the 2D S ¼ 1/2

Heisenberg antiferromagnet may be classical [57–59],

recent QMC simulations of diluted bilayers indicate that

the percolation threshold for the single layer system is very

close to a new quantum multi-critical point in an extended

parameter space [58,59]. Indeed, the dynamic critical

exponent obtained in these studies is consistent with the

thermal correlation length exponent nT < 0.7 that we have

found here. Therefore, in the temperature regime that we

have studied, the properties of La2Cu12z(Zn,Mg)zO4 near

the percolation threshold appear to be controlled by this new

critical point. Future inelastic neutron scattering measure-

ments of the full dynamic structure factor should give

further insight into this complex quantum many-body

system.
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